Deterministic Approximation for the Volume of the Truncated Fractional Matching Polytope

Heng Guo, Vishvajeet N

University of Edinburgh

ITCS 2025

Given as input *convex* body in high-dimensions, estimate its volume

Given as input convex body in high-dimensions, estimate its volume

> one of the most primitive tasks human beings have performed

Given as input convex body in high-dimensions, estimate its volume

> one of the most primitive tasks human beings have performed

fundamental parameter of any convex body

Given as input convex body in high-dimensions, estimate its volume

- > one of the most primitive tasks human beings have performed
- fundamental parameter of any convex body
- close connections to analysis and geometry, random walks, ...
 [Kannan-Lovász-Simonovits95] [Bourgain86] [Dyer-Frieze-Kannan91], ...

Given as input convex body in high-dimensions, estimate its volume

- > one of the most primitive tasks human beings have performed
- fundamental parameter of any convex body
- close connections to analysis and geometry, random walks, ...
 [Kannan-Lovász-Simonovits95] [Bourgain86] [Dyer-Frieze-Kannan91], ...
- exact computation is #P-hard!

Given as input *convex* body in high-dimensions, estimate its volume

- > one of the most primitive tasks human beings have performed
- fundamental parameter of any convex body
- close connections to analysis and geometry, random walks, ...
 [Kannan-Lovász-Simonovits95] [Bourgain86] [Dyer-Frieze-Kannan91], ...
- exact computation is #P-hard!

We study algorithms that approximately compute volume

Approximate volume computation

Input: convex body K with volume V and $\epsilon > 0$

Approximate volume computation

Input: convex body K with volume V and $\epsilon > 0$

Output: approximate volume \tilde{V} s.t. $(1-\epsilon)V \leq \tilde{V} \leq (1+\epsilon)V$

Approximate volume computation

Input: convex body K with volume V and $\epsilon > 0$

Output: approximate volume $ilde{V}$ s.t. $(1-\epsilon)V \leq ilde{V} \leq (1+\epsilon)V$

Time: $\operatorname{poly}(\frac{1}{\epsilon}) \cdot \operatorname{poly}(\#queries(K))$

Oracle \mathcal{O}_{K} : given point x, outputs whether $x \in K$ or a hyperplane separating x, K

Oracle \mathcal{O}_{K} : given point x, outputs whether $x \in K$ or a hyperplane separating x, K

polynomial-time approximation algorithms
 [Dyer-Frieze-Kannan91] ... [Jia-Laddha-Lee-Vempala24]

Oracle \mathcal{O}_{K} : given point x, outputs whether $x \in K$ or a hyperplane separating x, K

- polynomial-time approximation algorithms
 [Dyer-Frieze-Kannan91] ... [Jia-Laddha-Lee-Vempala24]
- use counting-to-sampling reductions
 [Jerrum-Valiant-Vazirani86]

Oracle \mathcal{O}_{K} : given point x, outputs whether $x \in K$ or a hyperplane separating x, K

- polynomial-time approximation algorithms
 [Dyer-Frieze-Kannan91] ... [Jia-Laddha-Lee-Vempala24]
- use counting-to-sampling reductions
 [Jerrum-Valiant-Vazirani86]
- work for general convex bodies

Oracle \mathcal{O}_{K} : given point x, outputs whether $x \in K$ or a hyperplane separating x, K

- polynomial-time approximation algorithms
 [Dyer-Frieze-Kannan91] ... [Jia-Laddha-Lee-Vempala24]
- use counting-to-sampling reductions
 [Jerrum-Valiant-Vazirani86]
- work for general convex bodies

are fully polynomial-time randomized approximation schemes (FPRAS)

Quest for deterministic counting algorithms

correlation decay	#independent sets #matchings	[Weitz05] [Bayati-Gamarnik- Katz-Nair-Tetali07]
Barvinok's polynomial interpolation method	#independent sets #q-colorings	[Barvinok15] [Patel-Regts17] [Liu-Srivastava-Sinclair19] [Bencs-Berrekkal-Regts24]
cluster expansion	<pre>#independent sets (dense random bipartite graphs)</pre>	[Helmuth-Perkins-Regts19] [Jensen-Keevash-Perkins20]
local CLTs	#independent sets #matchings	[Jain-Perkins-Sah- Sawhney21]

Quest for deterministic counting algorithms

correlation decay	#independent sets #matchings	[Weitz05] [Bayati-Gamarnik- Katz-Nair-Tetali07]
Barvinok's polynomial interpolation method	#independent sets #q-colorings	[Barvinok15] [Patel-Regts17] [Liu-Srivastava-Sinclair19] [Bencs-Berrekkal-Regts24]
cluster expansion	<pre>#independent sets (dense random bipartite graphs)</pre>	[Helmuth-Perkins-Regts19] [Jensen-Keevash-Perkins20]
local CLTs	#independent sets #matchings	[Jain-Perkins-Sah- Sawhney21]

Can deterministic algorithms approximate volume?

Unfortunately not for general convex bodies!

Unfortunately not for general convex bodies!

 deterministic algorithms require exponential #queries [Elekes86] [Bárány-Füredi87]

Unfortunately not for general convex bodies!

 deterministic algorithms require exponential #queries [Elekes86] [Bárány-Füredi87]

▶ hard instance : adaptively-constructed union of convex balls

Unfortunately not for general convex bodies!

 deterministic algorithms require exponential #queries [Elekes86] [Bárány-Füredi87]

▶ hard instance : adaptively-constructed union of convex balls

Do there exist poly-time deterministic algorithms for nicely-representable convex bodies?

Input: convex region defined by $Ax \leq b$ for $A \in \mathbb{R}^n \times \mathbb{R}^n, x, b \in \mathbb{R}^n$

Input: convex region defined by $Ax \leq b$ for $A \in \mathbb{R}^n \times \mathbb{R}^n, x, b \in \mathbb{R}^n$

- trivial membership oracle exists, thus:
- ▶ ignore structure, use randomized algorithm [Jia-Laddha-Lee-Vempala24]

Input: convex region defined by $Ax \leq b$ for $A \in \mathbb{R}^n \times \mathbb{R}^n, x, b \in \mathbb{R}^n$

trivial membership oracle exists, thus:

▶ ignore structure, use randomized algorithm [Jia-Laddha-Lee-Vempala24]

Deterministic algorithms for general polytopes?

Input: convex region defined by $Ax \leq b$ for $A \in \mathbb{R}^n \times \mathbb{R}^n, x, b \in \mathbb{R}^n$

trivial membership oracle exists, thus:

▶ ignore structure, use randomized algorithm [Jia-Laddha-Lee-Vempala24]

Deterministic algorithms for general polytopes?

 all known deterministic algorithms for general polytopes work in exponential time! [Barvinok93] [Lawrence91]

Input: convex region defined by $Ax \leq b$ for $A \in \mathbb{R}^n \times \mathbb{R}^n, x, b \in \mathbb{R}^n$

trivial membership oracle exists, thus:

▶ ignore structure, use randomized algorithm [Jia-Laddha-Lee-Vempala24]

Deterministic algorithms for general polytopes?

 all known deterministic algorithms for general polytopes work in exponential time! [Barvinok93] [Lawrence91]

▶ are exact algorithms, achieve exponentially-small error!

Polytopes with underlying combinatorial structure

Input: convex region defined by combinatorial polytope $Ax \le b$ for $A \in \mathbb{R}^n \times \mathbb{R}^n, x, b \in \mathbb{R}^n$ Polytopes with underlying combinatorial structure

Input: convex region defined by combinatorial polytope $Ax \leq b$ for $A \in \mathbb{R}^n \times \mathbb{R}^n, x, b \in \mathbb{R}^n$

e.g. independent set, matching polytope, hypergraph matching polytope, ...

Polytopes with underlying combinatorial structure

Input: convex region defined by combinatorial polytope $Ax \leq b$ for $A \in \mathbb{R}^n \times \mathbb{R}^n, x, b \in \mathbb{R}^n$

e.g. independent set, matching polytope, hypergraph matching polytope, ...

Can we leverage combinatorial structure of input polytope to deterministically approximate volume in polynomial-time?

Prior work: fractional independent set polytope

Definition (fractional independent set polytope)

Given graph G = (V, E), the fractional independent set polytope is defined as

 $I_{\mathcal{G}} := \left\{ \mathbf{x} \in [0,1]^{V} \mid x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \right\}$

Prior work: fractional independent set polytope

Definition (fractional independent set polytope)

Given graph G = (V, E), the fractional independent set polytope is defined as

 $I_{G} := \left\{ \mathbf{x} \in [0,1]^{V} \mid x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \right\}$

Restrict every variable to $\left[0, \frac{1}{2} + \delta\right]$:

Prior work: fractional independent set polytope

Definition (fractional independent set polytope)

Given graph G = (V, E), the fractional independent set polytope is defined as

 $I_{\mathcal{G}} := \left\{ \mathbf{x} \in [0,1]^{V} \mid x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \right\}$

Restrict every variable to $\left[0, \frac{1}{2} + \delta\right]$:

Definition (truncated fractional independent set polytope)

Given graph G = (V, E), the truncated fractional independent set polytope is defined as

$$I_{G,\delta} := \left\{ \mathbf{x} \in \left[0, \frac{1}{2} + \delta\right]^V \mid x_u + x_v \le 1 \text{ for every } uv \in E
ight\}$$

Definition (truncated fractional independent set polytope)

$$I_{G,\delta} := \left\{ \mathbf{x} \in \left[0, \frac{1}{2} + \delta\right]^V \mid x_u + x_v \leq 1 \text{ for every } uv \in E
ight\}$$

▶ [Gamarnik-Smedira23] gave deterministic quasi-polynomial time algorithm

truncation interval :
$$\left[0, \frac{1}{2} + \frac{O(1)}{\Lambda^2}\right]$$

Definition (truncated fractional independent set polytope)

$$I_{G,\delta} := \left\{ \mathbf{x} \in \left[0, \frac{1}{2} + \delta\right]^{V} \mid x_u + x_v \leq 1 \text{ for every } uv \in E
ight\}$$

▶ [Gamarnik-Smedira23] gave deterministic quasi-polynomial time algorithm

truncation interval :
$$\left[0, \frac{1}{2} + \frac{O(1)}{\Lambda^2}\right]$$

technique: correlation decay

Definition (truncated fractional independent set polytope)

$$I_{G,\delta} := \left\{ \mathbf{x} \in \left[0, \frac{1}{2} + \delta\right]^{V} \mid x_{u} + x_{v} \leq 1 \text{ for every } uv \in E \right\}$$

▶ [Gamarnik-Smedira23] gave deterministic quasi-polynomial time algorithm

truncation interval :
$$\left[0, \frac{1}{2} + \frac{O(1)}{\Lambda^2}\right]$$

- technique: correlation decay
- ▶ [Bencs-Regts24] gave FPTAS

truncation interval :
$$\left|0, \frac{1}{2} + \frac{O(1)}{\Lambda}\right|$$

Definition (truncated fractional independent set polytope)

$$I_{G,\delta} := \left\{ \mathbf{x} \in \left[0, \frac{1}{2} + \delta\right]^{V} \mid x_u + x_v \leq 1 \text{ for every } uv \in E
ight\}$$

▶ [Gamarnik-Smedira23] gave deterministic quasi-polynomial time algorithm

truncation interval :
$$\left[0, \frac{1}{2} + \frac{O(1)}{\Lambda^2}\right]$$

- technique: correlation decay
- ▶ [Bencs-Regts24] gave FPTAS

truncation interval :
$$\left|0, \frac{1}{2} + \frac{O(1)}{\Lambda}\right|$$

technique: Barvinok's polynomial interpolation method
Our work: Fractional Matching Polytope

We consider natural dual of independent set polytope

Our work: Fractional Matching Polytope

We consider natural dual of independent set polytope

Definition (fractional matching polytope)

Given graph G = (V, E), the fractional matching polytope is defined as

$$P_{\mathcal{G}} := \left\{ \mathbf{x} \in [0,1]^{\mathcal{E}} \mid \sum_{e \sim v} x_e \leq 1 ext{ for every } v \in V
ight\}$$

where $e \sim v$ if the edge e is adjacent to v

Our work: Fractional Matching Polytope

We consider natural dual of independent set polytope

Definition (fractional matching polytope)

Given graph G = (V, E), the fractional matching polytope is defined as

$$P_{\mathcal{G}} := \left\{ \mathbf{x} \in [0,1]^{\mathcal{E}} \mid \sum_{e \sim v} x_e \leq 1 ext{ for every } v \in V
ight\}$$

where $e \sim v$ if the edge e is adjacent to v

note: volume of polytope and dual can be quite different

Truncated fractional matching polytope

▶ restrict each variable to interval $M_{\delta} = [0, \frac{1+\delta}{\Delta}]$, then $P_{G,\delta} = M_{\delta}^{E} \cap P_{G}$:

Definition (truncated fractional matching polytope)

For $\delta > 0$ and a graph G = (V, E) of maximum degree Δ , the *truncated* fractional matching polytope is defined as follows

$$P_{G,\delta} := \left\{ \mathbf{x} \in \left[0, \frac{1+\delta}{\Delta} \right]^{\mathcal{E}} \mid \sum_{e \sim v} x_e \leq 1 \text{ for every } v \in V \right\}$$

Truncated fractional matching polytope

▶ restrict each variable to interval $M_{\delta} = [0, \frac{1+\delta}{\Delta}]$, then $P_{G,\delta} = M_{\delta}^{E} \cap P_{G}$:

Definition (truncated fractional matching polytope)

For $\delta > 0$ and a graph G = (V, E) of maximum degree Δ , the *truncated* fractional matching polytope is defined as follows

$$P_{G,\delta} := \left\{ \mathbf{x} \in \left[0, \frac{1+\delta}{\Delta} \right]^{\mathcal{E}} \mid \sum_{e \sim v} x_e \leq 1 \text{ for every } v \in V \right\}$$

▶ multiplicative relaxation of trivial truncation interval $\begin{bmatrix} 0, \frac{1}{\Delta} \end{bmatrix}$ $(P_{G,0} \equiv |E|$ -dimensional cube)

Truncated fractional matching polytope

▶ restrict each variable to interval $M_{\delta} = [0, \frac{1+\delta}{\Delta}]$, then $P_{G,\delta} = M_{\delta}^{E} \cap P_{G}$:

Definition (truncated fractional matching polytope)

For $\delta > 0$ and a graph G = (V, E) of maximum degree Δ , the *truncated* fractional matching polytope is defined as follows

$$P_{G,\delta} := \left\{ \mathbf{x} \in \left[0, \frac{1+\delta}{\Delta} \right]^{E} \mid \sum_{e \sim v} x_{e} \leq 1 \text{ for every } v \in V \right\}$$

▶ multiplicative relaxation of trivial truncation interval $\begin{bmatrix} 0, \frac{1}{\Delta} \end{bmatrix}$ $(P_{G,0} \equiv |E|$ -dimensional cube)

▶ let C_v is satisfied $\Leftrightarrow \sum_{e \sim v} x_e \leq 1$

Observe
$$\operatorname{Vol}(P_{G,\delta}) := \int_{M_{\delta}^{E}} \prod_{v \in V} \mathbb{1}_{C_{v}} d\mu$$

Theorem (truncated fractional matching polytope)

For any graph G of maximum degree $\Delta \geq 2$ and $\delta \leq \frac{c}{\Delta}$ for some constant C > 0,

there is a fully polynomial-time approximation scheme (FPTAS) for $Vol(P_{G,\delta})$

Theorem (truncated fractional matching polytope)

For any graph G of maximum degree $\Delta \geq 2$ and $\delta \leq \frac{c}{\Delta}$ for some constant C > 0,

there is a fully polynomial-time approximation scheme (FPTAS) for $Vol(P_{G,\delta})$

▶ using [Bencs-Regts24] directly yields $\delta \leq \frac{C}{\Delta^2}$

Theorem (truncated fractional matching polytope)

For any graph G of maximum degree $\Delta \geq 2$ and $\delta \leq \frac{c}{\Delta}$ for some constant C > 0,

there is a fully polynomial-time approximation scheme (FPTAS) for $Vol(P_{G,\delta})$

▶ using [Bencs-Regts24] directly yields $\delta \leq \frac{C}{\Delta^2}$

technique we use: cluster expansion

Finite ground set \mathcal{P} whose elements are called *polymers*

- ▶ Finite ground set P whose elements are called *polymers*

- ▶ Finite ground set P whose elements are called *polymers*
- $w(\cdot)$ assigns weight $w(\gamma)$ to polymer γ

- \blacktriangleright Finite ground set ${\cal P}$ whose elements are called *polymers*
- $w(\cdot)$ assigns weight $w(\gamma)$ to polymer γ

Definition (polymer model partition function)

$$\Xi(\mathcal{P},w) := \sum_{\Gamma} \prod_{\gamma \in \Gamma} w(\gamma),$$

where the sum is over compatible $\Gamma \subseteq \mathcal{P}$

Definition (cluster expansion)

cluster expansion of Ξ is the infinite power series:

$$\log \Xi(\mathcal{P}, w) := \sum_{\Gamma \in \mathcal{C}} \Phi(\Gamma) \prod_{\gamma \in \Gamma} w(\gamma)$$

where C is the set of "clusters"

recall $\Xi(\mathcal{P}, w) := \sum_{\Gamma} \prod_{\gamma \in \Gamma}$

Convergence of cluster expansion

Proposition (Kotecký-Preiss criterion [KP86])

Let $g: \mathcal{P} \to [0,\infty)$ be a "decay function". Suppose that for all $\gamma \in \mathcal{P}$, we have,

$$\sum_{\gamma' \not \sim \gamma} |w(\gamma')| \, e^{|\gamma'| + g(\gamma')} \le |\gamma|$$

Then, the cluster expansion converges absolutely

Algorithms from cluster expansion convergence

Proposition ([Jenssen-Keevash-Perkins20])

Fix an integer $\Delta > 0$ and let \mathcal{G} be a class of graphs of maximum degree at most Δ . Suppose the following conditions hold for a given polymer model with decay function $g(\cdot)$:

- (1) there exists $\rho > 0$ such that for every $G \in \mathcal{G}$ and every polymer $\gamma \in \mathcal{P}(G)$, $g(\gamma) \ge \rho |\gamma|$
- (2) there exist constants c₁, c₂ > 0 such that given a connected subgraph γ, determining whether γ is a polymer, and then computing w(γ) and g(γ) can be done in time O(|γ|^{c₁}e<sup>c₂|γ|)
 </sup>

(3) the Kotecký-Preiss criterion is satisfied

Then there exists an FPTAS for $\Xi(G)$ for every $G \in \mathcal{G}$

Algorithms from cluster expansion convergence

Proposition ([Jenssen-Keevash-Perkins20])

Fix an integer $\Delta > 0$ and let \mathcal{G} be a class of graphs of maximum degree at most Δ . Suppose the following conditions hold for a given polymer model with decay function $g(\cdot)$:

- (1) there exists $\rho > 0$ such that for every $G \in \mathcal{G}$ and every polymer $\gamma \in \mathcal{P}(G)$, $g(\gamma) \ge \rho |\gamma|$
- (2) there exist constants c₁, c₂ > 0 such that given a connected subgraph γ, determining whether γ is a polymer, and then computing w(γ) and g(γ) can be done in time O(|γ|^{c₁}e<sup>c₂|γ|)
 </sup>

(3) the Kotecký-Preiss criterion is satisfied

Then there exists an FPTAS for $\Xi(G)$ for every $G \in \mathcal{G}$

▶ [Jenssen-Keevash-Perkins20] proof uses Barvinok's interpolation method

$$Vol(P_{G,\delta}) = \int_{M_{\delta}^{E}} \prod_{v \in V} \mathbb{1}_{C_{v}} d\mu$$
$$= \dots$$
$$= \left(\frac{1+\delta}{\Delta}\right)^{|E|} \sum_{S \subseteq V} \prod_{K \in \mathcal{K}(S)} w(K)$$

$$Vol(P_{G,\delta}) = \int_{M_{\delta}^{E}} \prod_{v \in V} \mathbb{1}_{C_{v}} d\mu$$
$$= \dots$$
$$= \left(\frac{1+\delta}{\Delta}\right)^{|E|} \sum_{S \subseteq V} \prod_{K \in \mathcal{K}(S)} w(K)$$

▶ $S \subseteq [V]$ is a polymer if induced subgraph G[S] is connected

$$Vol(P_{G,\delta}) = \int_{M_{\delta}^{E}} \prod_{v \in V} \mathbb{1}_{C_{v}} d\mu$$
$$= \dots$$
$$= \left(\frac{1+\delta}{\Delta}\right)^{|E|} \sum_{S \subseteq V} \prod_{K \in \mathcal{K}(S)} w(K)$$

• $S \subseteq [V]$ is a polymer if induced subgraph G[S] is connected

 $S_1 \not\sim S_2 \text{ if } dist_G(S_1, S_2) \leq 1$

$$Vol(P_{G,\delta}) = \int_{M_{\delta}^{E}} \prod_{v \in V} \mathbb{1}_{C_{v}} d\mu$$
$$= \dots$$
$$= \left(\frac{1+\delta}{\Delta}\right)^{|E|} \sum_{S \subseteq V} \prod_{K \in \mathcal{K}(S)} w(K)$$

• $S \subseteq [V]$ is a polymer if induced subgraph G[S] is connected

▶ $S_1 \not\sim S_2$ if $dist_G(S_1, S_2) \leq 1$

$$\blacktriangleright w(S) = (-1)^{|S|} \int_{M_{\delta}^{E(S)}} \prod_{v \in S} \mathbb{1}_{\overline{C_v}} d\mu$$

 \blacktriangleright each polymer S encodes a connected component G[S] of violated constraints

• each polymer S encodes a connected component G[S] of violated constraints

 Kotecký-Preiss: weight of the polymers decay rapidly with size logarithm of partition function converges

• each polymer S encodes a connected component G[S] of violated constraints

 Kotecký-Preiss: weight of the polymers decay rapidly with size logarithm of partition function converges

 [Jenssen-Keevash-Perkins20] algorithm: convergence implies using Barvinok's interpolation method we can truncate the partition function up to logarithmically-many terms for a good approximation

• each polymer S encodes a connected component G[S] of violated constraints

 Kotecký-Preiss: weight of the polymers decay rapidly with size logarithm of partition function converges

 [Jenssen-Keevash-Perkins20] algorithm: convergence implies using Barvinok's interpolation method we can truncate the partition function up to logarithmically-many terms for a good approximation

 [Jenssen-Keevash-Perkins20] also requires weights of some polymers can be computed efficiently; but those conditions are easy to verify Verifying Kotecký-Preiss criterion

$$|w(S)| = \int_{M_{\delta}^{E(S)}} \prod_{v \in S} \mathbb{1}_{\overline{C_v}} d\mu$$

> view polymer weight as joint probability of constraints being violated

Verifying Kotecký-Preiss criterion

$$|w(S)| = \int_{M_{\delta}^{E(S)}} \prod_{v \in S} \mathbb{1}_{\overline{C_v}} d\mu$$

> view polymer weight as joint probability of constraints being violated

 pick maximal independent set on the vertices, so sets of constraints are independent

$$|w(S)| = \Pr\left[\bigwedge_{v \in S} \overline{C_v}\right] \leq \Pr\left[\bigwedge_{v \in I_S} \overline{C_v}\right] = \prod_{v \in I_S} \Pr\left[\overline{C_v}\right]$$

Verifying Kotecký-Preiss criterion

$$|w(S)| = \int_{M_{\delta}^{E(S)}} \prod_{v \in S} \mathbb{1}_{\overline{C_v}} d\mu$$

view polymer weight as joint probability of constraints being violated

pick maximal independent set on the vertices, so sets of constraints are independent

$$|w(S)| = \Pr\left[\bigwedge_{v \in S} \overline{C_v}\right] \leq \Pr\left[\bigwedge_{v \in I_S} \overline{C_v}\right] = \prod_{v \in I_S} \Pr\left[\overline{C_v}\right]$$

small truncation interval implies probability of violation of a set of constraints decays exponentially in its size

Theorem (truncated fractional matching polytope)

For any graph *G* of maximum degree $\Delta \ge 2$ and $\delta \le \frac{C}{\Delta}$ for some constant C > 0, there is a fully polynomial-time approximation scheme (FPTAS) for Vol($P_{G,\delta}$)

H with maximum degree Δ and maximum hyperedge size k

H with maximum degree Δ and maximum hyperedge size k

using similar polymer model as before:

$$\mathsf{Vol}(P_{H,\delta}) = \sum_{S \subseteq V} \int_{\mathcal{M}_{\delta}^{E \setminus E(S)}} 1 d\mu \left(\prod_{K \in \mathcal{K}(S)} (-1)^{|K|} \int_{\mathcal{M}_{\delta}^{E(K)}} \prod_{v \in K} \mathbb{1}_{\overline{C_v}} d\mu \right)$$

H with maximum degree Δ and maximum hyperedge size k

using similar polymer model as before:

$$\mathsf{Vol}(P_{H,\delta}) = \sum_{S \subseteq V} \int_{\mathcal{M}_{\delta}^{E \setminus E(S)}} 1 d\mu \left(\prod_{K \in \mathcal{K}(S)} (-1)^{|K|} \int_{\mathcal{M}_{\delta}^{E(K)}} \prod_{v \in K} \mathbb{1}_{\overline{C_v}} d\mu \right)$$

Theorem ((weaker) fractional hypergraph matching polytope) For hypergraphs of maximum degree $\Delta \ge 2$ and maximum hyperedge size k and truncation parameter $\delta \le \Theta \left(\frac{1}{\Delta k}\right)^{k-1}$, there is a fully polynomial-time approximation scheme (FPTAS) for Vol($P_{H,\delta}$)

Theorem (fractional hypergraph matching polytope)

For hypergraphs of maximum degree $\Delta \geq 2$ and maximum hyperedge size $k \geq 2$,

and $\delta \leq \frac{C}{\Delta^{\frac{2k-3}{k-1}}k}$ for some constant C > 0, there is an FPTAS for $Vol(P_{H,\delta})$

• improvement over truncation parameter $\delta \leq \Theta \left(\frac{1}{\Delta k}\right)^{k-1}$

Theorem (fractional hypergraph matching polytope) For hypergraphs of maximum degree $\Delta \ge 2$ and maximum hyperedge size $k \ge 2$, and $\delta \le \frac{C}{\Delta^{\frac{2k-3}{k-1}}k}$ for some constant C > 0, there is an FPTAS for Vol $(P_{H,\delta})$

- ▶ improvement over truncation parameter $\delta \leq \Theta \left(\frac{1}{\Delta k}\right)^{k-1}$
- carefully working with hypergraph structure and constructing polymers which are *minimal connected subgraphs* (MCSes) in the incidence graph of *H*

Theorem (fractional hypergraph matching polytope) For hypergraphs of maximum degree $\Delta \ge 2$ and maximum hyperedge size $k \ge 2$, and $\delta \le \frac{C}{\Delta^{\frac{2k-3}{k-1}}k}$ for some constant C > 0, there is an FPTAS for Vol($P_{H,\delta}$)

- ▶ improvement over truncation parameter $\delta \leq \Theta \left(\frac{1}{\Delta k}\right)^{k-1}$
- carefully working with hypergraph structure and constructing polymers which are *minimal connected subgraphs* (MCSes) in the incidence graph of *H*
- crucially uses a combination of our technique with that of [Bencs-Regts24]

Theorem (fractional hypergraph matching polytope) For hypergraphs of maximum degree $\Delta \ge 2$ and maximum hyperedge size $k \ge 2$, and $\delta \le \frac{C}{\Delta^{\frac{2k-3}{k-1}}k}$ for some constant C > 0, there is an FPTAS for Vol($P_{H,\delta}$)

- ▶ improvement over truncation parameter $\delta \leq \Theta \left(\frac{1}{\Delta k}\right)^{k-1}$
- carefully working with hypergraph structure and constructing polymers which are *minimal connected subgraphs* (MCSes) in the incidence graph of *H*
- crucially uses a combination of our technique with that of [Bencs-Regts24]
- Kotecký-Preiss criterion analysis requires a hypergraph generalization of broken circuit theory for graphs [Whitney32] [Tutte54]
Summary

• We studied deterministic volume approximation for the truncation of the fractional matching polytope, which is the natural dual of the independent set polytope

Summary

• We studied deterministic volume approximation for the truncation of the fractional matching polytope, which is the natural dual of the independent set polytope

• We obtain an FPTAS for polytope volume using the cluster expansion technique

Summary

• We studied deterministic volume approximation for the truncation of the fractional matching polytope, which is the natural dual of the independent set polytope

• We obtain an FPTAS for polytope volume using the cluster expansion technique

• We develop an FPTAS for the truncation of the hypergraph matching polytope, analyzed using a novel generalization of broken circuit theory for hypergraphs

Future directions

Faster FPTAS?

 $f(\Delta)n^c$ running time instead of current $n^{f(\Delta)}$?

Future directions

• Faster FPTAS?

 $f(\Delta)n^c$ running time instead of current $n^{f(\Delta)}$?

• Expanding truncation interval?

larger than $\left[0, \frac{C}{\Delta}\right]$ and as big as $\left[0, 1-\epsilon\right)$?

Future directions

• Faster FPTAS?

 $f(\Delta)n^c$ running time instead of current $n^{f(\Delta)}$?

• Expanding truncation interval?

larger than $\left[0, \frac{C}{\Delta}\right]$ and as big as $\left[0, 1 - \epsilon\right)$?

• Relaxing constant-degree assumption?

perhaps on special classes of graphs like expander, random, bipartite graphs?

Thank you!