Extracting Mergers and Projections of Partitions

Swastik Kopparty, Vishvajeet N

Univ. of Toronto, Univ. of Edinburgh

RANDOM 2023

▶ Randomized algorithms require access to many *unbiased* and *uncorrelated* random bits

▶ Randomized algorithms require access to many *unbiased* and *uncorrelated* random bits

▶ Sources might be biased and correlated! ("impure/weak sources")

▶ Randomized algorithms require access to many *unbiased* and *uncorrelated* random bits

▶ Sources might be biased and correlated! ("impure/weak sources")

▶ Algorithms should still work provably

▶ Randomized algorithms require access to many *unbiased* and *uncorrelated* random bits

▶ Sources might be biased and correlated! ("impure/weak sources")

 \blacktriangleright Algorithms should still work provably

We study objects that purify randomness - condensers and extractors

Randomness condensers

Condenser is an object which "purifies" a "weak source" of randomness, making it "less impure"

Randomness extractors

Extractor is an object which "purifies" a "weak source" of randomness, making it "completely pure"

Weak random source

Measure of purity of source: min-entropy

Definition (*k*-source)

X supported on $\{0,1\}$ ^{*n*} such that for all *x*, $Pr[X = x] \le 2^{-k}$

Weak random source

Measure of purity of source: min-entropy

Definition (*k*-source) *X* supported on $\{0,1\}$ ^{*n*} such that for all *x*, $Pr[X = x] < 2^{-k}$

Definition (entropy-rate) *k*-source on $\{0,1\}^n$ has min-entropy rate $\frac{k}{n}$

Uniform distribution $U_n \Leftrightarrow$ source with min-entropy $n \Leftrightarrow$ entropy-rate 1

Condensers

Input: k -source on $\{0,1\}$ ^{*n*}

Condensers

Input: k -source on $\{0, 1\}$ ^{*n*}

Output: distribution on $\{0,1\}^m$ which is ϵ -close to some distribution with (high) min-entropy *k*'

Condensers

Input: k -source on $\{0,1\}$ ^{*n*}

Output: distribution on $\{0,1\}^m$ which is ϵ -close to some distribution with (high) min-entropy *k*'

we would like $\frac{k'}{m} > \frac{k}{n}$

"increases min-entropy rate of source"

Extractors

Input: k -source on $\{0,1\}$ ^{*n*}

Extractors

Input: k -source on $\{0,1\}$ ^{*n*}

Output: distribution on $\{0,1\}^m$ which is ϵ -close to having entropy rate 1

allow access to very few purely-random bits, "seed"

allow access to very few purely-random bits, "seed"

Definition (seeded (k, ϵ) -extractor)

EXT : $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ s.t. for every *k*-source *X*, distribution of *EXT*(*X, U_d*) is ϵ -close to U_m

allow access to very few purely-random bits, "seed"

Definition (seeded (k, ϵ) -extractor) *EXT* : $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ s.t. for every *k*-source *X*, distribution of *EXT*(*X, U_d*) is ϵ -close to U_m

function *EXT* when chosen at random is an extractor:

- seed-length $d = \log(n k) + 2 \log(\frac{1}{\epsilon}) + O(1)$
- output-length $m = k + d 2 \log \frac{1}{\epsilon} O(1)$

allow access to very few purely-random bits, "seed"

Definition (seeded (k, ϵ) -extractor) *EXT* : $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ s.t. for every *k*-source *X*, distribution of *EXT*(*X, U_d*) is ϵ -close to U_m

function *EXT* when chosen at random is an extractor:

- seed-length $d = \log(n k) + 2 \log(\frac{1}{\epsilon}) + O(1)$
- output-length $m = k + d 2 \log \frac{1}{\epsilon} O(1)$

optimal! *^d* [≥] log(*ⁿ* [−] *^k*) ⁺ ² log(¹) + *O*(1) [RTS00],[AGO⁺20]

Seeded condensers

we must have $k' < k + d$, and usually want improved entropy-rate $\frac{k'}{m} > \frac{k}{n}$

Definition (seeded condenser)

COND : $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ s.t. for every *k*-source *X*, distribution of *COND*(*X, U_d*) is ϵ -close to some source on $\{0,1\}$ *m* with min-entropy *k*^{*'*}

Seeded condensers

we must have $k' < k + d$, and usually want improved entropy-rate $\frac{k'}{m} > \frac{k}{n}$

Definition (seeded condenser)

COND : $\{0,1\}^n \times \{0,1\}^d \rightarrow \{0,1\}^m$ s.t. for every *k*-source *X*, distribution of *COND*(*X, U_d*) is ϵ -close to some source on $\{0,1\}$ ^{*m*} with min-entropy *k*^{*'*}

function *COND* when chosen at random is a condenser:

seed-length $d = \log(n - m + 1) + \log(\frac{1}{\epsilon}) + O(1)$

output min-entropy $k + d$ for any $k < m - d - \log(\frac{1}{\epsilon}) - O(1)$

Somewhere-random sources

Definition (*t*-part somewhere-random source) $X_1, \ldots, X_t \in (\{0,1\}^n)^t$ s.t. there exists an (unknown) *i*, s.t. X_i is uniform over *{*0*,* ¹*}ⁿ*

special case of a general *k*-source with entropy rate 1*/t*

Definition (Merger)

 $M: (\{0,1\}^n)^t \times \{0,1\}^d \rightarrow \{0,1\}^m$ that purifies every input *t*-part somewhere-random source *X*

- studied in the "condensing regime":
	- \triangleright output is ϵ -close to some source with min-entropy rate (1δ) ; for $\delta > 0$

Definition (Merger)

```
M: ({0, 1}^n)^t \times {0, 1}^d \rightarrow {0, 1}^m that purifies every input t-part
         somewhere-random source X
```
- **•** studied in the "condensing regime":
	- \triangleright output is ϵ -close to some source with min-entropy rate (1δ) ; for $\delta > 0$
- **•** historically crucial in advancement of new extractors [TS00],[LRVW03],[DKSS09], . . .

Definition (Merger)

```
M: (\{0,1\}^n)^t \times \{0,1\}^d \rightarrow \{0,1\}^m that purifies every input t-part
          somewhere-random source X
```
- **•** studied in the "condensing regime":
	- \triangleright output is ϵ -close to some source with min-entropy rate (1δ) ; for $\delta > 0$
- **•** historically crucial in advancement of new extractors [TS00],[LRVW03],[DKSS09], . . .
- [DKSS09]: explicit (condensing) mergers exist with seed-length $d = \frac{1}{\delta} \cdot \log(\frac{2t}{\epsilon})$
	- ▶ builds on prior work on Kakeya Set problem [Dvi08], [DW09]
	- ► constant seed-length since *t* usually constant

Definition (Merger)

```
M: (\{0,1\}^n)^t \times \{0,1\}^d \rightarrow \{0,1\}^m that purifies every input t-part
          somewhere-random source X
```
- **•** studied in the "condensing regime":
	- \triangleright output is ϵ -close to some source with min-entropy rate (1δ) ; for $\delta > 0$
- **•** historically crucial in advancement of new extractors [TS00],[LRVW03],[DKSS09], . . .
- [DKSS09]: explicit (condensing) mergers exist with seed-length $d = \frac{1}{\delta} \cdot \log(\frac{2t}{\epsilon})$
	- ▶ builds on prior work on Kakeya Set problem [Dvi08], [DW09]
	- ► constant seed-length since *t* usually constant
- condensing mergers perform much better than condensers, which require log *n* seed in this regime

Extracting mergers

We study mergers in the "*extracting* regime":

Definition (seeded extracting merger)

 $E: \{\{0,1\}^n\} \times \{0,1\}^d \to \{0,1\}^m$ s.t. for every *t*-part somewhere-random source X, distribution of $E(X, U_d)$ is ϵ -close to U_m

Extracting mergers

We study mergers in the "*extracting* regime":

Definition (seeded extracting merger) $E: \{\{0,1\}^n\} \times \{0,1\}^d \to \{0,1\}^m$ s.t. for every *t*-part somewhere-random source X, distribution of $E(X, U_d)$ is ϵ -close to U_m

Do there exist extracting mergers requiring small, maybe constant seed?

OR

Are they completely overshadowed by standard extractors for min-entropy rate $\frac{1}{t}$?

Let n, *t be integers* and $\epsilon > 0$. Then for any *integer* $m \leq n$, *setting*: $d = \log m + \log (t - 1) + 2 \log \frac{1}{\epsilon} + O(1)$ there exists a function $E: (\{0,1\}^n)^t \times \{0,1\}^d \rightarrow \{0,1\}^m$ that is an ϵ -extracting *merger*

▶ we extract $\text{poly}(\frac{1}{\epsilon})$ fully-random bits with constant $O(\log t + \log \frac{1}{\epsilon})$ bits of seed

Theorem

Let n, *t be integers* and $\epsilon > 0$. Then for any *integer* $m \leq n$, *setting*: $d = \log m + \log (t - 1) + 2 \log \frac{1}{\epsilon} + O(1)$ there exists a function $E: (\{0,1\}^n)^t \times \{0,1\}^d \rightarrow \{0,1\}^m$ that is an ϵ -extracting *merger*

▶ we extract $\text{poly}(\frac{1}{\epsilon})$ fully-random bits with constant $O(\log t + \log \frac{1}{\epsilon})$ bits of seed

Standard extractor requires $\Theta(\log n + \log t + \log(\frac{1}{\epsilon}))$ bits to extract a single bit!

Theorem

Let n, *t be integers* and $\epsilon > 0$. Then for any *integer* $m \leq n$, *setting*: $d = \log m + \log (t - 1) + 2 \log \frac{1}{\epsilon} + O(1)$ there exists a function $E: (\{0,1\}^n)^t \times \{0,1\}^d \rightarrow \{0,1\}^m$ that is an ϵ -extracting *merger*

- ▶ we extract $\text{poly}(\frac{1}{\epsilon})$ fully-random bits with constant $O(\log t + \log \frac{1}{\epsilon})$ bits of seed
- Standard extractor requires $\Theta(\log n + \log t + \log(\frac{1}{\epsilon}))$ bits to extract a single bit!
- \triangleright function taken at random with constant seed-length is NOT an extracting merger!

Theorem

Let n, *t be integers* and $\epsilon > 0$. Then for any *integer* $m \leq n$, *setting*: $d = \log m + \log (t - 1) + 2 \log \frac{1}{\epsilon} + O(1)$ there exists a function $E: (\{0,1\}^n)^t \times \{0,1\}^d \rightarrow \{0,1\}^m$ that is an ϵ -extracting *merger*

◮ *E* extracts Ω(*n*) fully-random bits with Ω(log *n*) bits of seed

Theorem

Let n, *t be integers* and $\epsilon > 0$. Then for any *integer* $m \le n$, *setting*: $d = \log m + \log (t - 1) + 2 \log \frac{1}{\epsilon} + O(1)$ there exists a function $E: (\{0,1\}^n)^t \times \{0,1\}^d \rightarrow \{0,1\}^m$ that is an ϵ -extracting *merger*

◮ *E* extracts Ω(*n*) fully-random bits with Ω(log *n*) bits of seed

ightharpoonup no better than using standard extractor which requires $\Theta(\log n)$ bits of seed!

Theorem

Let n, *t be integers* and $\epsilon > 0$. Then for any *integer* $m \le n$, *setting*: $d = \log m + \log (t - 1) + 2 \log \frac{1}{\epsilon} + O(1)$ there exists a function $E: (\{0,1\}^n)^t \times \{0,1\}^d \rightarrow \{0,1\}^m$ that is an ϵ -extracting *merger*

◮ *E* extracts Ω(*n*) fully-random bits with Ω(log *n*) bits of seed

ightharpoonup no better than using standard extractor which requires $\Theta(\log n)$ bits of seed!

what is the true seed-length requirement?

Theorem $(t = 2)$

Let $E: (\{0,1\}^n) \times (\{0,1\}^d \rightarrow \{0,1\}^m$ be a ϵ -extracting merger. *Then for* $\epsilon \geq 2^{-\Omega(m)}$, we have:

$$
d \geq \log m + \log \frac{1}{\epsilon} - O(1)
$$

and for $\epsilon < 2^{-\Omega(m)}$, we have:

 $d \geq \Omega(m)$

Theorem $(t = 2)$ Let $E: (\{0,1\}^n) \times (\{0,1\}^d \rightarrow \{0,1\}^m$ be a ϵ -extracting merger. *Then for* $\epsilon \geq 2^{-\Omega(m)}$, we have: $d \geq \log m + \log \frac{1}{\epsilon} - O(1)$ and for $\epsilon < 2^{-\Omega(m)}$, we have: $d > \Omega(m)$

"if you want to extract all bits, there is no advantage in knowing that source is somewhere-random"

Proof overview:

 $E: [N] \times [N] \times [D] \rightarrow [M]$ be an ϵ -extractor for somewhere-random source (X, Y)

Proof overview:

 $E: [N] \times [N] \times [D] \rightarrow [M]$ be an ϵ -extractor for somewhere-random source (X, Y)

• consider uniformly-random $S \subseteq [M]$ s.t. $|S| = 10 \epsilon \cdot M$

Proof overview:

 $E: [N] \times [N] \times [D] \rightarrow [M]$ be an ϵ -extractor for somewhere-random source (X, Y)

- **•** consider uniformly-random $S \subseteq [M]$ s.t. $|S| = 10 \epsilon \cdot M$
- attempt to pick $g : [N] \to [N]$ such that $Pr_{Y, J}[E(g(Y), Y, J) \in S] = 0$

Proof overview:

 $E: [N] \times [N] \times [D] \rightarrow [M]$ be an ϵ -extractor for somewhere-random source (X, Y)

- **•** consider uniformly-random $S \subseteq [M]$ s.t. $|S| = 10 \epsilon \cdot M$
- attempt to pick $g : [N] \to [N]$ such that $Pr_{Y, J}[E(g(Y), Y, J) \in S] = 0$
	- ▶ attempt must fail, otherwise contradiction to extracting merger property!

Proof overview:

 $E: [N] \times [N] \times [D] \rightarrow [M]$ be an ϵ -extractor for somewhere-random source (X, Y)

- **•** consider uniformly-random $S \subseteq [M]$ s.t. $|S| = 10 \epsilon \cdot M$
- attempt to pick $g : [N] \to [N]$ such that $Pr_{Y, J}[E(g(Y), Y, J) \in S] = 0$

▶ attempt must fail, otherwise contradiction to extracting merger property!

• reveals strange structure, which we dig more into, prove lower bound on *D*

Proof overview:

 $E: [N] \times [N] \times [D] \rightarrow [M]$ be an ϵ -extractor for somewhere-random source (X, Y)

- **•** consider uniformly-random $S \subseteq [M]$ s.t. $|S| = 10 \epsilon \cdot M$
- attempt to pick $g : [N] \to [N]$ such that $Pr_{Y, J}[E(g(Y), Y, J) \in S] = 0$

▶ attempt must fail, otherwise contradiction to extracting merger property!

• reveals strange structure, which we dig more into, prove lower bound on *D*

Proof uses second-moment strengthening of approach in [RTS00]

t-part *s*-where random sources

min-entropy rate $\frac{s}{t}$ sources with $s > 1$ uniform and independent blocks

t-part *s*-where random sources

min-entropy rate $\frac{s}{t}$ sources with $s > 1$ uniform and independent blocks

Definition (*t*-part *s*-where-random source) $X_1, \ldots X_t \in (\{0,1\}^n)^t$ s.t. there exists an (unknown) $J, |J| = s$ s.t. $\times_{i \in J} X_i$ is uniform over (*{*0*,* ¹*}n*)*^s*

Extracting multimergers

Definition (Seeded extracting multimergers)

 $E: \{\{0,1\}^n\}^t \times \{0,1\}^d \rightarrow \{0,1\}^m$ s.t. for every *t*-part *s*-where random source *X*, distribution of $E(X, U_d)$ is ϵ -close to U_m

Extracting multimergers

Definition (Seeded extracting multimergers) $E: \{\{0,1\}^n\}^t \times \{0,1\}^d \rightarrow \{0,1\}^m$ s.t. for every *t*-part *s*-where random source *X*, distribution of $E(X, U_d)$ is ϵ -close to U_m

Do there exist seedless extracting multimergers?

3-bit Majority multimerger

Theorem (Majority extracts)

Let $E((X_1,...,X_n) \times (Y_1,...,Y_n) \times (Z_1,...,Z_n)) = MAJ(X_1,Y_1,Z_1)$ then, *for every* 3-part 2-where *random source* (X, Y, Z) *, distribution of* $E(X, U_d)$ *is* $\frac{1}{4}$ -close to U_1

3-bit Majority multimerger

can we do better without using any seed?

Projections and seedless extraction

Equivalent to an independent geometric question:

Theorem

There exists a *seedless* ϵ -extractor *for t*-part *s*-where random sources

if and only if

There exists a *partition* of $({0,1}^n)$ ^{*t*} *into A and B such that every s*-dimensional *projection of A and B has size between* $\frac{1}{2} - \epsilon$ *and* $\frac{1}{2} + \epsilon$

Question: what is the smallest error of a (*t,s*)-seedless extracting multi-merger with 1-bit output?

Question: what is the smallest error of a (*t,s*)-seedless extracting multi-merger with 1-bit output?

Question: what is the smallest error of a (*t,s*)-seedless extracting multi-merger with 1-bit output?

Theorem *For any partition of* [*N*] *^t into c parts, there exists a s-dimensional projection of size at least* ?? *· ^N^s*

natural partition analogues of Shearer's Lemma

Question: what is the smallest error of a (*t,s*)-seedless extracting multi-merger with 1-bit output?

Theorem *For any partition of* [*N*] *^t into c parts, there exists a s-dimensional projection of size at least* ?? *· ^N^s*

natural partition analogues of Shearer's Lemma

focus here on $c = 2$ case

we seek:

Theorem

For any bipartition of [*N*] ³*, there exists ^a* ²*-dimensional projection of size* [≥]??

we seek:

Theorem

For any bipartition of [*N*] ³*, there exists ^a* ²*-dimensional projection of size* [≥]??

attempt:

ighthere exists a part with size $\geq \frac{N^3}{2}$

we seek:

Theorem

For any bipartition of [*N*] ³*, there exists ^a* ²*-dimensional projection of size* [≥]??

attempt:

ighthere exists a part with size $\geq \frac{N^3}{2}$

► by Shearer's Lemma, this part has a projection of size $\geq (\frac{N^3}{2})^{\frac{2}{3}} \geq 0.629... \cdot N^2$

we seek:

Theorem

For any bipartition of [*N*] ³*, there exists ^a* ²*-dimensional projection of size* [≥]??

attempt:

ighthere exists a part with size $\geq \frac{N^3}{2}$

► by Shearer's Lemma, this part has a projection of size $\geq (\frac{N^3}{2})^{\frac{2}{3}} \geq 0.629... \cdot N^2$

We show there exists a projection of size $\geq \frac{3}{4}N^2 \Rightarrow$

majority multimerger is optimal!

Proof overview:

O fix arbitrary partition A, B (a.k.a "colouring")

Proof overview:

- **O** fix arbitrary partition A, B (a.k.a "colouring")
- assume for sake of contradiction "top projections" are small \bullet $(\Pi_Z(A), \Pi_Z(B) < \frac{3}{4})$

Proof overview:

- **O** fix arbitrary partition \overline{A} , \overline{B} (a.k.a "colouring")
- assume for sake of contradiction "top projections" are small $(\Pi_Z(A), \Pi_Z(B) < \frac{3}{4})$
- **6** fix a slice, study the sum of projections of A and B on a slice;

Proof overview:

- **O** fix arbitrary partition \overline{A} , \overline{B} (a.k.a "colouring")
- assume for sake of contradiction "top projections" are small \bullet $(\Pi_Z(A), \Pi_Z(B) < \frac{3}{4})$
- **O** fix a slice, study the sum of projections of A and B on a slice; (miraculously) this sum has lower bound of $1-\sqrt{1-3/4}=\frac{1}{2}$

Proof overview:

- **O** fix arbitrary partition A, B(a.k.a "colouring")
- assume for sake of contradiction "top projections" are small $(\Pi_Z(A), \Pi_Z(B) < \frac{3}{4})$
- **8** fix a slice, study the sum of projections of A and B on a slice; (miraculously) this sum has lower bound of $1-\sqrt{1-3/4}=\frac{1}{2}$
- averaging over slices give a large side projection

Proof overview:

- **O** fix arbitrary partition A, B(a.k.a "colouring")
- assume for sake of contradiction "top projections" are small $(\Pi_Z(A), \Pi_Z(B) < \frac{3}{4})$
- **8** fix a slice, study the sum of projections of A and B on a slice; (miraculously) this sum has lower bound of $1-\sqrt{1-3/4}=\frac{1}{2}$
- averaging over slices give a large side projection

3-bit majority multimerger is optimal!!

- We also prove lower bounds for partitioning [*N*] ² into 3 parts
- Our proofs work even for open covers of the solid cube [0*,* 1] ³, rectangle $[0, 1]^{2}$
- **Our bounds beat those obtained by Shearer's Lemma/Loomis Whitney** inequality

Summary

- We study mergers in the extracting regime and our extractors can extract $\operatorname{poly}(\frac{1}{\epsilon})$ using constant seed
- Our lower bound shows that standard extractors overshadow extracting mergers when tasked with extracting Ω(*n*) bits from source

We prove lower bounds on sizes of low-dimensional projections of partitions and our bounds beat those obtained by Shearer's Lemma/Loomis Whitney

Thank you!